

Pain Management in Burn Patients

RATTAPHOL SEANGRUNG, MD

Department of Anesthesiology

Faculty of Medicine

Ramathibobi Hospital Mahidol University

Introduction

- Ideal method "multidisciplinary approach"
- 1. specific treatment
- 2. pain management
- 3. psychological support
- 4. physical rehabilitation

Introduction

- Challenging for pain management
- 1. initial emergency room through the rehabilitation phase
- 2. complex physiology
- 3. chronic nature
- 4. long-term post-traumatic stress and general emotional distress
- 5. highly variable and unreliable predicted by clinical assessment

Problems for pain management

Gaps between Evidence and Practice

- inadequate attitudes and knowledge
- incomplete, sporadic, or nonstandard pain assessment
- concerns about the side effects
- dependence on opioids
- opioid addiction
- psychological distance

How to approach

- understand the type of tissue damage
- understand the nature of standard burn care
- aggressive pain control
- avoid the undertreatment
- humanistic management

Provide proactive plans and management

- individualized care
- consideration of the clinical context
- efficacy of multiple classes of medications
- efficacy of modes of drugs delivery
- nondrug techniques

Outcome of optimal pain management

- improves patients' quality of life and satisfaction
- reduces the risk of many complications
- permits earlier discharge
- facilitates recovery through multiple mechanisms
- reduce short-and long-term costs of care

Pathophysiology

- depend on location and extent
- different sources: heat, cold, electricity, or chemicals/radiation
- molecular level: toxic inflammatory mediators
- cellular level: protein denaturation and coagluation with surrounding tissue hypoperfusion and capillary vasoconstriction
- Iocal responses to systemic responses

Features of burn depths associated with pain

Burn Depth	Appearance	Blistering	Sensation	
Epidermal	Red	None	Painful	
Partial Thickness				
Superficial	Pink with wet appearance Brisk cap-refill	(+)	Painful	
Deep	Pale/fixed red staining Poor cap-refill	(+/)	Painful or painless	
Full Thickness	Leathery white or brown	None	None in burned area (+/-) Pain at edges	

Types of pain in burn patients

- often severe and extreme
- 1. burn depth
- 2. total body surface area affected
- 3. mechanism of injury
- 4. various patient factors
- both nociceptive and neuropathic

Types of pain in burn patients

- four different categories
- 1. rest pain (constant, dull background pain)
- 2. breakthrough pain (intermittent, short duration, rapid onset/offset, sometimes excruciating pain)
- 3. procedural pain (short duration, greatest intensity, occurring with certain activities
- 4. psychogenic pain (anticipatory pain in the absence of mechanical stimulation)

Pharmacologic Nonpharmacologic

- Pharmacologic management of burn pain
- 1. opioids
- 2. N-Methyl-D-Aspartate (NMDA)-receptor antagonists
- 3. Nonsteroidal Anti-Inflammatory Agents (NSAIDS)
- 4. gabapentinoids
- 5. Na+-channel blockers: local anesthetics
- 6. α 2-adrenergic agonists
- 7. anxiolytics

Opioids

- morphine, hydromorphone, and fentanyl
- administered by a variety of routes
- inexpensive and familiarity
- greater than maximum recommended doses (acute phase)
- acute opioid tolerance and opioid-induced hyperalgesia

reversed by methadone or nonopioid analgesic (ketamine, dextromethorphan, and clonidine)

Opioids

- methadone
- receptor binding properties mu-opioid
 - N-methyl-D-aspartate (NMDA)-receptor antagonist serotonin and norepinephrine reuptake inhibitor
- oral, parenteral, and rectal routes
- variable and unpredictable potency

Opioids fentanyl

- rapid onset of action and quick redistribution from the central circulation
- administer intravenous or transmucosal
- useful adjunct for procedural burn care activities
- patient-controlled analgesia (PCA)

N-Methyl-D-Aspartate (NMDA)-receptor antagonists ketamine

- reduced the area of secondary hyperalgesia
- antihyperalgesia and anti-allodynia
- synergistic effects with superior pain relief
- reduced opioid consumption
- less risk of respiratory depression and negligible psychomimetic or dissociative effects (1 to 3 mcg/kg/min)

N-Methyl-D-Aspartate (NMDA)-receptor antagonists ketamine

- patient-controlled analgesia for burn dressing
- no risk of developing tolerance
- no risk of withdrawal
- Iong-term sedation and analgesia
- effective analgesic agent for pediatric burn patient

N-Methyl-D-Aspartate (NMDA)-receptor antagonists dextromethorphan

- reduced excitatory transmission of primary afferent pathways
- effective in neuropathic/wind-up pain
- unable to receive ketamine and no psychomimetic effects
- synergistic effects with superior pain relief
- reduced opioid consumption
- 60 mg twice a day to 90 mg three times a day

Non steroidal anti-inflammatory agents (NSAIDS)

- reduce the neurogenic inflammatory pain and fever
- time and dose limitation
- ceiling effect
- risks of bleeding and renal dysfunction
- acetaminophen: useful for background postburn pain in children

gabapentinoids

gabapentin and pregabalin

- suppresses transmission
- activates and enhances the efficacy and release of descending noradrenergic neuronal activity
- decrease primary mechanical allodynia
- useful in reducing neuropathic burn-related pain
- decreased opioid consumption

gabapentinoids

- pregabalin (up to 300 mg twice a day over a period of 28 days) significantly reduced several aspects of the neuropathic pain and pain associated with procedures
- after treatment with pregabalin in a burn outpatient clinic found 69% of patients experienced some reduction in pain score

Na+-channel blockers: local anesthetics

- reduce primary and secondary hyperalgesia
- intravenous lidocaine:
 - attenuate long-term inflammation-induced tissue responses to thermal injury
 - attenuate cytokine-induced cell injury in endothelial and vascular smooth muscle cells
- treatment of neuropathic pain

Na+-channel blockers: local anesthetics

- peripheral regional nerve blockade
- neuraxial block
- postoperative pain control
- aware of the potential infectious complications

α 2-adrenergic agonists

clonidine and dexmedetomidine

- highly selective central and peripheral α2-adrenergic agonists
- decrease noradrenaline release at presynaptic receptor sites
- reduce pain intensity
- morphine-sparing effect
- analgesia and sedation

α2-adrenergic agonists clonidine and dexmedetomidine

- anti-inflammatory effects
- improved macrophage function
- antiapoptotic activity
- reduced delirium
- reduced mortality

α 2-adrenergic agonists

clonidine and dexmedetomidine

- Clonidine: 2 to 5 mcg/kg PO, 0.1 to 0.3 mg/24 hr TTD, or 30 mcg to 300 mcg IV for procedural sedation in chronic opioid/chronic pain patients
- Dexmedetomidine: iv infusion at 0.2 to 1 mcg/kg/hr but may be bolused intermittently in small doses of 4 to 8 mcg iv push with minimal side effects

Agents	Examples	Mechanism of Action	Administration
Opioids	Fentanyl, morphine, Hydromorphone	mu-R agonism	IV, PO, IM, TD
Methadone		mu-R agonism, NMDA-R antagonism, serotonin- and NE-reuptake inhibition	PO
NMDA antagonists	Ketamine Dextromethorphan	Noncompetitive NMDA-R antagonism	IV(Ketamine) PO(dextromethorphan)
NSAIDs	Ketorolac Ibuprofen APAP	Cyclooxygenase (COX-1 and -2) inhibition	IV, PO, PR
Gabapentinoids	Gabapentin Pregabalin	Ca2+ channel blockade (α2δ-1 subunit- containing channels)	РО
Local anesthetics	Lidocaine Bupivacaine Ropivacaine	Na+ channel blockade	IV (lidocaine), epidural/intrathecal, perineural, TD
α2 adrenergic agonists	Clonidine Dexmedetomidine	Central and peripheralα2-adrenergic blockade/sympatholysis	IV (dexmedetomidine), PO

- Nonpharmacologic management of burn pain
- 1. helpful in the treatment
 - long-term nature of rehabilitation
 - possible development of chronic pain
 - stress-related disorders
- 2. modalities
 - virtual reality
 - music therapy
 - relaxation techniques

Nonpharmacologic management of burn pain

Method	Purported Mechanism of Action
Virtual reality	Mostly visual distraction/decrease in processing of incoming nociceptive signals
Music therapy	Auditory distraction/attenuation of stress response to pain
Relaxation techniques	Behavioral management of anxiety, especially immediately pre-procedure/dressing changes

Summary

- understand the principles of analgesia and the importance of delivering the right drugs at the right time
- aggressive multimodal and multidisciplinary approach
- consists of both nociceptive and neuropathic components
- both pharmacologic and nonpharmacologic modalities